Learning Control Applied to a Digital-to-analogue Converter

Universitetet i Stavanger

CCTA2023 – 16 Aug 2023

Noa van Rijt (TU/e) Ahmad Faza (UiS) Tom Oomen (TU/e) Arnfinn A. Eielsen (UiS)

Motivation for Ultra Linear DACs in High Precision Applications

• System characteristics

Ę

- Quantization intervals
- Integral non-linearity
- Transistor distortions

ъ

- Control methodologies
 - Model compensation
 - Dither and filtering

Traditional > OL observer FB!

• Feedback control? — MPC > computationally intensive!

1

Ę

Why applying ILC to a DAC

v

-5

0

- Phase response of the Anti-aliasing/ reconstruction filter is incorporated as the plant (avoids phase margin limitation when utilizing ADCs for FB)
- Removes all invariant errors
- Unique gap in the literature allowing the use of classical FB control

0.5

Research question:

Can learning control improve the performance from a digital-to-analogue converter over traditional Delta-Sigma modulation without using complex calibrated methods?

Relative RMSE performance: $\Delta\Sigma$ + DAC VS $\Delta\Sigma$ + DAC + LC.

ъ

[ms]

Background information on (I)LC

[*] F. Queißer. Multi-modal Skill Memories for Online Learning of Interactive Robot Movement Generation. Bielefeld: Universität Bielefeld, 201

- Technique that operates on complete experiment signals: u(j) and e(j).
- Traditional FB or OL experiments are run online, and the error trajectory is saved for offline data processing.
- As the invariant error trajectories are predictable, they can be feedback into temporal feedforward control actions.
- This process is performed iteratively or repetitively (with or without reset)

ъS

Implementing Learning Control

Update rule for a reference-augmenting feed-forward element f

$$f(j+1) = Q \ast f(j) + L \ast e(j)$$

Ē

A norm-optimal feedforward is achieved if the cost function J is minimised

$$J(f_{j}) = e_{j}^{T} W_{e} e_{j} + f_{j}^{T} W_{f} f_{j} + (f_{j} - f_{j-1})^{T} W_{\Delta F} (f_{j} - f_{j-1})$$

Accordingly, for $I = (G^T W_e G + W_f + W_{\Delta F})^{-1}$

Control Law Design Choice:

Serial Repetitive Lifted-domain Learning Control

Hence the matrix G is obtained as the convolution matrix containing the impulse response for the dynamics of each sample in a repeating interval.

System integration and modelling

ß

Results and Discussions

Ē

S

Experimental Results and Performance Comparison

ß

Type & System configuration		ENOB
No modulation	1 bit DAC	2
	16 bit DAC	14.7
$FO\Delta\Sigma$	1 bit DAC	5.9
	16 bit DAC	14.7
FΟΔΣLC	1 bit DAC	9.8
	16 bit DAC	16.0

Ę

 Discussion 	 Recommendation
Limitations: - 16bit ADC measurement boundary	Improvement: - Use DAC in an actual system:
- Extend the study to more DACs	AFF + absolute + frequency +
- No theoretic on analysis stability	- ADC measurement or simulation
Possibilities: - 95% improved RMSE performance	Applications: - Digital control performance/cost
- No manual calibration necessary	- High fidelity audio system
- Suitable for repetitive signals	- Sinusoid linearity tests

\circ Conclusion

Learning control can improve the performance from a digital-to-analogue converter over traditional Delta-Sigma modulation without using complex calibrated methods.

• Closing words

1-bit DAC audio example with or without ILC:

References for external resources and visual aids

Resource:

The map of control theory: R-2R resistor ladder: Wafer stage positioning:

DAC card:

TU/e

Frequency domain learning: Audiofile, "thanks for your attention": https://engineeringmedia.com/map-of-control

https://www.electronics-tutorials.ws/combination/r-2r-dac.html

https://www.micro-epsilon.com/applications/branch/Halbleiter/Positionierung-Waferstage/ https://ieeexplore.ieee.org/book/5264508

https://www.artisantg.com/TestMeasurement/94727-1/National-Instruments-PCIe-7852-PCIe-7852R-Mutlifuction-Reconfigurable-I-O-Device

https://canvas.tue.nl/courses/17897

https://soundoftext.com/

ß

THANK YOU

