Spectral Density Shaping of Quantisation Error Using Dithering

Ahmad Faza' 1, John Leth2, Arnfinn A. Eielsen1

{ahmad.faza, arnfinn.a.Eielsen}@uis.no $\{\dagger\}$ l}@es.aau.dk

¹Dept. of Energy and Petroleum Engineering, **University of Stavanger**, Norway **²**Dept. of Electronic Systems, **Aalborg University**, Denmark

University of Stavanger

• Background:

Quantisation and **re-quantisation** are fundamental operations in digital signal processing, digital-analogue conversion, power electronics and measurement systems. **Error** is introduced since **only a discrete subset of values can be represented**. Several methods can be used **to shape** the power spectral density **(PSD)** of the error due to quantisation. Such methods include **ΔΣ**-modulation, model predictive control (**MPC**) and Learning control (**LC**). **Shaping** the error PSD **can be used to reduce the effective power content** of error due to quantisation **by additional filtering** in the frequency domain **where the error power is concentrated**.

• Method:

Dither is a high-frequency periodic or stochastic signal introduced into a system to modify its non-linear characteristics.

• Quantisation error: $q(w) \triangleq Q(w) - w = y - w$

- Approximating the colouring filter ^Η*(jω)*: Let $\Phi^+(\omega) \triangleq \begin{cases} -\langle \infty \rangle, & -\langle \infty \rangle - \langle \cdot \rangle \end{cases}$ then: $H(j\omega) = \sqrt{\Phi^+(\omega)}$ • Results: $s(\omega)$ $\frac{\Delta^2}{}$ 12 **attainable**! $(\omega) \triangleq \begin{cases} \Phi(\omega), & \Phi(\omega) \geq 0, \\ 0, & \Phi(\omega) < 0. \end{cases}$ ω), $\Psi(\omega)$ ω ω $+_{(\infty)} \triangleq \begin{bmatrix} \Phi(\omega), & \Phi(\omega) \geq 0 \end{bmatrix}$ $\Phi^+(\omega) \triangleq \left\{ \begin{array}{cc} 1 & \text{for } 0 & 0 \\ 0 & \Phi^+(\omega) & 0 \end{array} \right\}$ $\left[0, \Phi(\omega) < 0 \right]$ \triangleq (4) (5)
	- 10 Bits uniform quantiser, $x = x0$.

The method relies on the use of a **linear noise colouring filter** ^Η*(jω)* and **a static nonlinear transform** *F*(⋅) to generate a dither signal with **a joint specification** of the probability density function (**PDF**) and the **PSD**.

• Contribution:

It is limited by a quantisation noise floor $\frac{\Delta^2}{42}$ $\frac{4}{12}$. Where **Δ** is the least significant bit (**LSB**).

Results from **[1]** and the method from **[2]** are used to provide a **novel solution** to the problem of **shaping the PSD of the total error** due to uniform quantisation when applying a non-subtractive dither signal. The paper demonstrates that making the error power **independent of the input** enables shaping the error PSD as a **separate problem.** Moreover, an **improved** performance **compared to existing** nonsubtractive **dithering methods** is shown attainable for a **wide range** of PSDs.

$-E[y]$ - TPDF -2 -1.5 -2.5 -1 -0.5 $x[\Delta]$

• Synthesis Limitations:

As long as the specified $S(\omega)$ corresponds to a $\Phi(\omega) \geq 0$ for all ω (PSDs must be nonnegative), the desired shaping at the output stage is attainable. Unfortunately, $\Phi(\omega)$ is not guaranteed to be non-negative at all frequencies for every specified $S(\omega)$.

 $\tau = \sin \left(\frac{\pi}{2} R(\tau) \right)$ $\rho(\tau) = \sin \left(\frac{\pi}{2} R(\tau) \right)$ $(\pi_{D(\tau)})$ $=\sin\left(\frac{\pi}{2}R(\tau)\right)$ From **[1]**, we know that **both** RPDF and TPDF dither can linearise the uniform quantiser (since both have $E[\varepsilon](x) = 0$; i.e. $E[y] = x$). However, considering $s(\tau) = E[\varepsilon^2]R(\tau)$, the dither PDF choice should aim to **avoid** the **noise modulation** effect due to the **dependence** of the error power $(E[\varepsilon^2](x))$ over **x**. From the Fig. above, **TPDF** is the appropriate choice. Hence, solving (2) yields: (3)

 $(2 \t)$

• References:

[1] R. A. Wannamaker, S. Lipshitz, J. Vanderkooy, and J. N. Wright, "A Theory of Nonsubtractive Dither," *IEEE Trans. Signal Process.*, vol. 48, no. 2, pp. 499–516, 2000.

[2] M. M. Sondhi, "Random processes with specified spectral density and first-order probability density," *Bell System Technical Journal*, vol. 62, no. 3, pp. 679–701, 1983.

• Design Objectives:

Generating a dither signal *d* which **both** linearizes the uniform quantiser $(E[y] = x)$ **and** induces a desired PSD *S(ω)* for *ε*.

• Existing Methods:

The best spectral shaping performance known to be achievable using nonsubtractive dithering is found in **[1]**:

> $S_{\varepsilon}(\omega) = S_d(\omega) + \frac{\Delta^2}{12} \frac{2}{f_s}$ Δ $= S_d(\omega) +$

• Proposed Approach:

The method in **[2]** is adapted to work out the connection **between** the autocovariance functions (**ACFs**) *ϕ(τ)* of *υ* and *s(τ)* of *ε such that* **the spectral smearing** due to the PDFshaping non-linearity *F(*⋅*)* and the uniform quantiser *Q(*⋅*)* **is anticipated**. From [2], the autocorrelation functions (normalized ACFs)

- *R(τ)* of *ε* and *ρ(τ)* of *υ* are related as follows: 2 (m, n, ρ) $\bigl[{\cal E}^2 \bigr]$ $(Q(F(m)+x)-x)(Q(F(n)+x)-x)$ dmdn. $R = \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{g(m,n)}{n^2}$ *E* ρ ε $= \int_{\mathbb{R}} \int_{\mathbb{R}}$ (2)
	- The choice of dither PDF (i.e. *F(*⋅*)*):

Rectangular PDF vs **Triangular** PDF

(1)