

26 – 29 August 2024 | Hamburg, Germany

IMEKI

IMPROVING THE ACCURACY OF DIGITAL-TO-ANALOGUE CONVERTERS Jonathan Sæthre Ege

Norwegian University of Science and Technology

Introduction of speaker

- PhD Candidate at NTNU
 - Faculty of Information Technology and Electrical Engineering (IE)
 - Department of Electronic Systems (IES)
 - Research group: Circuit and Radio Systems (KR)
 - Researching DAC IC design
 - DAC with >=18 ENOB @ 100 kHz BW
 - Collaborating with:
 - The research group Precision Instrumentation & Control Lab (PINACL) at University of Stavanger (UiS)
 - Aalborg University in Denmark
 - Justervesenet (Norwegian Metrology Service)

https://www.ntnu.edu/employees/jonathan.s.ege https://pinacl.ux.uis.no/

2

Jonathan Sæthre Ege

What, why, and how?

- What
 - Evaluate five linearisation / error mitigating methods
 - In-house designed DACs
- Why

3

- State-of-the-art semiconductor-based DAC 17 ENOB @ 10 kHz BW [1]
- Principally limited by static errors [1]
- Mainly slew rate limited at higher BW [2]
- Wide range of applications
- Off-the-shelf DACs

Digital-to-analogue converter (DAC)Integrated circuit (IC)Effective number of bits (ENOB)Bandwidth (BW)

[1] A. Eielsen and A. J. Fleming, "Existing methods for improving the accuracy of digital-to-analog converters," Review of Scientific Instruments, vol. 88, no. 9, p. 094702, 2017. [2] M. J. Pelgrom, Analog-to-Digital Conversion. Springer, 2013

Faculty of Information Technology and Electrical Engineering (IE) Department of Electronic Systems (IES) Research group: Circuit and Radio Systems (KR)

Applications

- Metrology
- Mechatronics
- Lithography
- Optics

What, why, and how?

- How
 - DAC IC design
 - Static and dynamic models

Applications

- Metrology
- Mechatronics
- Lithography
- Optics

Digital-to-analogue converter (DAC) Effective number of bits (ENOB)

4

Integrated circuit (IC) Bandwidth (BW)

[1] A. Eielsen and A. J. Fleming, "Existing methods for improving the accuracy of digital-to-analog converters," Review of Scientific Instruments, vol. 88, no. 9, p. 094702, 2017. [2] M. J. Pelgrom, Analog-to-Digital Conversion. Springer, 2013

Faculty of Information Technology and Electrical Engineering (IE) Department of Electronic Systems (IES) Research group: Circuit and Radio Systems (KR)

Digital-to-analogue converters (DACs)

Digital-to-analogue converter (DAC) Effective number of bits (ENOB) Most significant bit (MSb)

5

Least significant bit (LSb) Signal-to-noise and distortion ratio (SINAD) Integral Non-linearity (INL)

Digital-to-analogue converters (DACs)

Faculty of Information Technology and Electrical Engineering (IE) Department of Electronic Systems (IES) Research group: Circuit and Radio Systems (KR)

6

Digital-to-analogue converters (DACs)

- Deviations
 - Static
 - Mismatch
 - Dynamic
 - Slew rate
 - Glitch

Digital-to-analogue converter (DAC) Effective number of bits (ENOB) Most significant bit (MSb)

7

Least significant bit (LSb) Signal-to-noise and distortion ratio (SINAD) Integral Non-linearity (INL)

DAC IC design

- 130 nm technologies
 - Open-source, SkyWater SKY130
 - Proprietary
- 6-bit and 16-bit DAC
- Current-steering (CS) topology

Integral Non-linearity (INL)		
Tech \ DAC	6 bit	16 bit
SKY130	± 0.8 LSb	\pm 42 LSb
Proprietary	±1.7 LSb	± 700 LSb

Least significant bit (LSb) Integral Non-linearity (INL)

8

Faculty of Information Technology and Electrical Engineering (IE) Department of Electronic Systems (IES) Research group: Circuit and Radio Systems (KR)

Linearisation methods

- Physical level calibration (PHYSCAL)
- Noise shaping with digital calibration (NSDCAL) ٠

DAC

DAO

Secondary

Primarv

dither

- Dynamic element matching (DEM)
- Periodic high-frequency dithering (PHFD) •

Vout

 $\alpha = 1/2$

Stochastic high-pass dithering (SHPD) •

Low-pass filter (LPF)

9

input

DEN Encoder

DEM

DA(

DA(

Results

- Relative to baseline results
- Static modelling and dynamic modelling

Signal-to-noise and distortion ratio (SINAD) Sampling frequency (Fs)

10

Faculty of Information Technology and Electrical Engineering (IE) Department of Electronic Systems (IES) Research group: Circuit and Radio Systems (KR)

Conclusion

PHA2CUT N2DCAT PHED 2HbD DEW

Linearisation method

Effective number of bits (ENOB)

Faculty of Information Technology and Electrical Engineering (IE) Department of Electronic Systems (IES) Research group: Circuit and Radio Systems (KR) Strong correlation between the static modelling and the dynamic modelling (Mainly for SKY130)

Performance improvements

- Physical level calibration (PHYSCAL)
- Noise shaping with digital calibration (NSDCAL)
 - 18 ENOB @ 100 kHz BW using static models and assuming accurate INL measurements
- Periodic high-frequency dithering (PHFD)

Small or no performance improvements

- Dynamic element matching (DEM)
- Stochastic high-pass dithering (SHPD)

IMEKO2024 XXIV World Congress

26 – 29 August 2024 | Hamburg, Germany

ΙΜΕΚΠ

Discussion

IMPROVING THE ACCURACY OF DIGITAL-TO-ANALOGUE CONVERTERS

This work was supported by the Research Council of Norway, project FRIPRO 313716 https://prosjektbanken.forskningsradet.no/en/project/FORISS/313716

Image: Norwegian University of Science and Technology

IMEKO2024 XXIV World Congress

26 – 29 August 2024 | Hamburg, Germany

ΙΜΕΚΠ

Thank you IMPROVING THE ACCURACY OF DIGITAL-TO-ANALOGUE CONVERTERS

This work was supported by the Research Council of Norway, project FRIPRO 313716 https://prosjektbanken.forskningsradet.no/en/project/FORISS/313716

Image: Norwegian University of Science and Technology