Linearisation of Digital-to-Analog Converters using Model Predictive Control

B. Adhikari¹, R. van der Rots¹, J. Leth², A. A. Eielsen¹

University of Stavanger

NMPC-2024

August 21-24 Kyoto, Japan

¹ University of Stavanger, Norway

²Aalborg University, Denmark

Introduction

Digital to Analog Converters

- Key to bridging the analog and digital domain,
- Converts digital code to analog voltage or current,
- Analog output is proportional to the digital input.

Applications

- Digital Audio: CD Players, telephones
- Function Generators: Digital oscilloscopes, signal generators
- Motor controllers
- Interferometry

Figure: Digital-to-analog conversion

- DAC: Quantisation (Re-quantisation) and Reconstruction filter
 Quantisation → quantisation error and static error(INL)
 adds noise and distortions to the analog output signal
 Figure: DAC
- method to mitigate the effects of these errors

- Quantisation (Re-quantisation): map analog infinite (finely quantised) input values to a smaller set of discrete finite values,
- Quantisation:

$$y = \mathbf{Q}(w) = \delta \ell := \delta \left\lfloor \frac{w}{\delta} + \frac{1}{2} \right\rfloor, \qquad (1$$

|.| is a floor operator.

Figure: Analoge sinusoidal and quantised signal.

Analog/finely quantised signal Quantised signal

Quantisation Error

- Quantisation
 - Analog signal is represented by the digital number of finite number of bits,
 - ➔ Introduce loss of information.
- Quantisation Error: difference between input and quantised output

$$q = y - w. \tag{2}$$

- Resolution: amount of variance in output value for every change of the value in the digital input,
- $\blacksquare \ \mathcal{B} \text{ bit} \rightarrow 2^{\mathcal{B}} \text{ levels (4 bit} \rightarrow 16 \text{ levels)},$
- Introduces noise and distortion in the output signal.

Figure: Quantisation and quantisation error

Static Error: Integral Non-linearity (INL)

 Static errors: deviation of actual levels from the ideal ones in the DAC, due to element mismatch.

Integral non-linearity (INL):

- y- ideal output,
- $INL(\ell)$ deviation at the level $\ell \in \mathbb{N}$,
- \tilde{y} -Actual output, $\tilde{y}(\ell) = y(\ell) + \delta INL(\ell).$ (3)
- cause unwanted noise and disturbance,
- limits the accuracy of the analog output signal.

Moving Horizon Optimal Quantiser [Goodwin et. al. 2003]¹

- Quantisation problem is cast into the general moving horizon optimisation problem.
- Obtained by incorporating the reconstruction filter H(z) into the model

 $H(z) = 1 + C(zI - A)^{-1}B$

State-space realization of the system:

$$x(t+1) = Ax(t) + B(y(t) - w(t))$$

e(t) = Cx(t) + y(t) - w(t) (4)

 Error e represent the difference between the filtered reference signal and filtered quantised signal.

Linearisation of Digital-to-Analog Converters using Model Predictive Control.

Figure: Incorporation of the filter

¹ Goodwin, G.C., Quevedo, D.E., and McGrath, D. (2003). Moving-horizon optimal quantizer for audio signals. Journal of the Audio Engineering Society, 51(3), 138–149.

Moving Horizon Optimal Quantiser

Problem Formulation:

$$y^{*}(t) = \arg\min_{y(t)} V_{N} = \sum_{t=k}^{k+N-1} e^{2}(t)$$
 (5a)

subject to

$$x(t+1) = Ax(t) + B(y(t) - w(t))$$
(5b)

$$e(t) = Cx(t) + y(t) - w(t)$$
 (5c)

$$y(t) \in \mathbb{U}^N.$$
(5d)

where,

 $\mathbb{U} = \{y_1, y_2, \dots, y_{n_U}\}, n_U = 2^{\mathcal{B}-1}$ is a discrete set representing quatisation levels,

N - finite prediction horizon,

 $\mathbb{U}^N := \mathbb{U} \times \ldots \times \mathbb{U}$ and contains $n_{\mathbb{U}}^N$ elements.

Moving Horizon Optimal Quantiser

- Closed-form solution is provided in [Goodwin et. al 2003]¹ but
 - assumes ideal uniform quantisation model,
 - transforms to vector quantisation problem,
 - the dimension of the solution space depends on the of quantiser resolution and the prediction horizon length.
- In practice DACs are
 - non-uniform thus the method provides no linearising effect in practice and,
 - large solution space makes the approach impractical for the precision DACs with higher number of quantisation levels.
- Modified MHOQ implementation method:
 - non-ideal DACs, include INL into the model,
 - solve MHOQ numerically as mixed-integer scalar quantisation problem.

Linearisation of Digital-to-Analog Converters using Model Predictive Control.

¹ Goodwin, G.C., Quevedo, D.E., and McGrath, D. (2003). Moving-horizon optimal quantizer for audio signals. Journal of the Audio Engineering Society, 51(3), 138–149.

Block diagram of implementation is shown in the following figure

Figure: Synthesis and implementation of moving horizon optimal quantisers in DAC with INL.

Simulation

• Signal to noise and distortion ratio (SINAD) = $20 \log_{10} \left(\frac{\sigma_s}{\sigma_t} \right)$ where, $\sigma_s = \text{s.d. of the input signal,} \sigma_t = \text{s.d. of other unwanted components in the output signal}$

DAC Model: model used in designing the control scheme

DAC Actual: model used as actual converter response

Quantisation Method	DAC Model	DAC Actual	Abbrev.
Direct	Without INL	Without INL	DQ-1
Direct (Baseline)	Without INL	With INL	DQ-2
MHOQ (Ideal)	Without INL	Without INL	MHOQ-1
MHOQ (Goodwin et. al.)	Without INL	With INL	MHOQ-2
MHOQ (This paper)	With INL	With INL	MHOQ-INL

Table: Abbreviations for different combinations of method, DAC model used in control scheme, and actual DAC response.

Simulation and Experiment: Setup

- **Reference signal:** $w(t) = A\sin(2\pi ft)$
- Carrier signal frequency f = 1 kHz
- Sampling frequency $f_s = 1 \text{ MHz}$
- Second-order Low-pass butterworth filter H(z) with cutoff frequency $f_c = 10$ kHz.
- 8- bit DAC
- INL- measured form the actual DAC

Experimental Setup

Figure: Experimental setup

Simulation and Experiment: Results

Figure: Simulation SINAD gains for various methods, relative to the baseline (SINAD_{DO-2} = 41.236).

Figure: Experimental SINAD gains for various methods relative to the baseline $(SINAD_{DQ-2} = 41.470).$

- A modified MHOQ based approach proposed to minimise error in DACs.
- INL is integrated into the model as a lookup table.
- The proposed method was validated through simulations and experiments on a common off-the-shelf DAC.
- Incorporating INL into the model using MHOQ improves DAC performance.